Referatai, kursiniai, diplominiai

   Rasti 103 rezultatai

Kompleksinis kursinis Projektas Žingsninio variklio valdiklis Ivadas, užduoties analizė, analogiškų valdiklių apžvalga
Elektronika  Kursiniai darbai   (15 psl., 842,8 kB)
Stabilizatoriai
2011-03-29
Stabilizatoriai
Fizika  Referatai   (12 psl., 51,69 kB)
Elektronikos pagrindu egzameno spera-konspektas.
Aplinka  Konspektai   (13 psl., 84,07 kB)
Elektrosauga
2011-01-19
Tarptautiniuose dokumentuose ir nacionaliniuose teisės šaltiniuose akcentuojama žmogaus teisė į sveikas ir saugias darbo sąlygas. Žmogaus egzistavimo aplinkoje egzistuoja įvairios prigimties pavojingi ir kenksmingi veiksniai, galintys sukelti traumas, sutrikdyti darbingumą arba pakenkti sveikatai. Vienas iš tokių veiksnių – elektra. Todėl elektros inžinerijos ir giminingų specialybių specialistams reikia žinoti apsaugos būdus. Šios disciplinos tikslas supažindinti apsaugos nuo elektros pavojingais ir kenksmingais veiksniais apsaugojimo jų būdais. Pavojingi ir kenksmingi dažniausiai yra elektros įrenginiai ir gamtos reiškiniai.
Darbo ir civilinė sauga  Kita   (31 psl., 108,41 kB)
Darbo tikslas: 1) išsiaiškinti suvirinimo transformatoriaus konstrukciją, techninius duomenis, veikimo prinicipą, eksploatacijos taisykles; 2) Bandymais nustatyti pagrindines charakteristikas. Darbo užduotis: 1) išsiaiškinti suvirinimo transformatoriaus konstrukciją, techninius duomenis, veikimo principą, eksploatacijos taisykles. 2) Surašyti ir nubraižyti suvirinimo transformatoriaus išorines charakteristikas esant „ mažoms“, „ vidutinėms“, „didelėms“ srovėms. 3) Apskaičiuoti ir nubraižyti transformatoriaus atviro lanko voltamperinę charakteristiką esant 3mm. Plieniniam elektrodui. 4) Išmatuoti ir nubraižyti transformatoriaus atviro lanko voltamperinę charakteristiką; 5) Nustatyti suvirinimo tranformatoriaus naudingumo koeficiantą η ir galios koeficiantą cosφ.
Elektronika  Laboratoriniai darbai   (5 psl., 170,45 kB)
Elektromagnetinės indukcijos reiškinys – elektros srovės atsiradimas uždarame laidininke,kintant jį veriančiam magnetiniam srautui. Lenco taisyklė : indukuotoji srovė visada teka tokia kryptimi, kad jos sukurtas magnetinis laukas priešintųsi priežasčiai sukūrusiai srovę.Jei magnetinis laukas,kuriame yra laidininkas,stiprėja,tai indukuotoji srovė sužadina priešingos krypties magnetinį lauką,jei silpnėja – tos pačios krypties lauką.
Fizika  Konspektai   (10 psl., 21,04 kB)
AB „VST“ veiklos apibūdinimas. Veiklos apibūdinimas. Veiklos rezultatai. Misija, vizija, vertybės. Įmonės valdymo struktūra. Elektros pirkimo (gamybos) ir finansinio atsikaitymo už elektros energiją organizavimas, esama tvarka bei tobulinimo kryptys. Atliekamų darbų technologija. Įmonėje naudojami elektros įrenginiai. Tipai, paskirtis, schemos. Įmonėje atliekami elektros įrenginių remonto, priežiūros bei eksploatavimo darbai. Galios transformatoriai. Skirstyklos. Kondensatoriai. Oro ir oro kabelių linijos. Elektros kabelių linijos. Relinė apsauga ir elektros automatika. Įžeminimo įrenginiai. Įmonėje atliekami elektros ir elektros įrenginių parametrų matavimai. Matavimų įteisinimo dokumentai. Atsakingo už elektros ūkį padalinio ar specialisto dokumentai.
Aplinka  Ataskaitos   (33 psl., 1,56 MB)
Elektros srove vadinamas kryptingas (tvarkingas) elektringųjų dalelių judėjimas. Elektros srovė, atsirandanti laidininke, kai jame sukuriamas elektrinis laukas, vadinama laidumo srove. Laidumo srovę dažniausiai sudaro: metaluose - judantys laisvieji elektronai, puslaidininkiuose - judantys laidumo elektronai ir skylės, elektrolituose bei dujose - judantys jonai.
Fizika  Referatai   (12 psl., 470,54 kB)
Kalbos vienetai. Fonema. Morfema. Žodžių junginys. Sakinys. Pagrindiniai žodžio požymiai. Ženklas. Ženklų rūšys. Žymiklis. Žyminys. Žodžio forma. Žodžio variantai. Jungimo funkcija. Žodžių funkcija.
Literatūra  Paruoštukės   (1 psl., 13,04 kB)
Procesorius
2010-01-19
Pagrindinis IBM tipo PK privalumas, turbut ir lemes šios klases kompiuteriu isivyravima, yra tas, kad jis yra komplektuojamas iš atskiru daliu, t.y. pagal pasirinkima galima keisti bet koki PK konfiguracijos elementa ar prideti nauja. Taigi PK ir apibudina kiekvieno kompiuterio elemento parametrai. Todel, atsivertus kainorašti ar PK dokumentacija, pamatomi kiekvienos detales duomenys. Nežinanciam tai tikra makalyne - prireikus kompiuterio, tenka konsultuotis su pardavejais, kurie retai kada objektyviai ivertina situacija ir padeda pasirinkti poreikius ir galimybes atitinkancia kaina. Pagrindine informacine eilute, kurioje sutelpa visa kompiuterio informacija, gali atrodyti maždaug taip (pvz. Nr.1): Pentium 166 MHz Intel MMX 512k; 16MB RAM; 3,5'' FDD; HDD WDAC 3,1 Gb; SVGA 1 MB; 14''/0,28 MPR II, LR; pele; klaviatura. Konfiguracija gali buti ir kitokia, taciau i šia eilute sudetos svarbiausios dalys ir išemus nors viena iš ju kompiuteris nebeveiks arba nebus pilnavertis. Todel, kad PK veiktu, reikia pagrindines plokštes (motherboard), centrinio procesoriaus (CPU), operatyviosios atminties (RAM), vaizdo plokštes (video card), korpuso (case), diskasukio (FDD), kietojo disko (HDD) klaviaturos (keyboard) ir monitoriaus. Šiuo metu neatsiejama butinybe darosi pele (moise) bei CD-ROM disku skaitymo irenginys. Trumpai apibudinsime kiekviena iš ju. Pagrindine plokšte. Tai kompiuterio stuburas. Pats pavadinimas pasako, kad tai PK pagrindas, sujungiantis kitus elementus. I pagrindine plokšte galima ikišti centrini procesoriu, operatyviaja atminti, vaizdo plokšte, prijungti kietaji diska, diskasuki, klaviatura bei daug kitokiu irenginiu. Pagrindine plokšte pirmiausia apibudina procesoriu klase, kuriems ji skirta: 286, 386 (SX, DX), 486 (SX, DX), Pentium, Pentium Pro (Dual) ar Pentium II. Dažniausiai i nurodytos klases plokšte galima kišti bet kokio darbinio dažnio atitinkancios klases procesorius, taciau buna išimciu, todel prieš dedant ar renkantis procesoriu svarbu paskaityti pagrindines plokštes aprašyma, kuriame paprastai buna išvardint leidžiami procesoriai. Rašydamas apie pagrindines kompiuteriu dalis, nepaminejau tokio komponento, kaip kontroleris, ir tai padariau samoningai todel, kad šiuo metu kontroleriai dažniausiai buna imontuoti pagrindines plokštes viduje. Senesnese plokštese - 286, 386 bei 486 VL-BUS - kontroleris yra kaip atskira plokšte ir jo funkcija yra ryšiu su išoriniais irenginiais (printeriu, kietuoju disku, diskasukiu bei kt.) palaikymas. Jau gal metai kaip pasirode pagrindines plokštes su imontuotomis viduje garso kortomis (Sound Blaster), taciau jos didelio pasisekimo neturi. Tai rodo, kad atskiru komponentu integravimas i viena plokšte neperspektyvus. Verta pamineti pagrindiniu plokšciu charakteristika yra spartinancioji atmintis (cache memory). Pvz. Nr.1 tokios atminties yra 512 k, t.y. 512 kilobaitu (1 baitas = 8 bitai, 1 bitas = 1 dvejetaines abeceles simbolis). Ji skirta procesoriaus ryšiui su operatyviaja atmintimi spartinti. Dažniausiai spartinanciosios atminties pagrindineje plokšteje buna 256 k. Didesni jos kiekiai reikalingi didesniems operatyviosios atminties kiekiams (>=64MB) spartinti. Dar yra nemažai pagrindiniu plokšciu charakteristiku, priklausanciu nuo firmos gamintojos bei kitu veiksniu, bet apie juos, jei bus idomu, parašysiu kitame straipsnyje, kuri bus galima paskirti vien pagrindinems plokštems. Centrinis procesorius. Tai kompiuterio smegenys. Centrinis procesorius (CP) atlieka visas skaiciavimo ir valdymo funkcijas, kurios vienu ar kitu budu yra nurodomos PK. Kaip jau paaiškejo iš pagrindines plokštes aprašymo, dabar yra šešios personaliniu kompiuteriu CP klases: 286, 386 (SX, DX), 486 (SX, DX), Pentium, Pentium Pro ir Pentium II. Taigi procesoriu apibudina jo klase ir kitas labai svarbus bruožas - darbinis dažnis. Svarbiausia CP greicio charakteristika yra klase, taciau ir darbinio dažnio žymus indelis. Štai didelio darbinio dažnio žemesnes klases CP gali apdoroti operacijas tokiu paciu greiciu kaip ir aukštesnes klases mažo darbinio dažnio - 5x86 (486 klases) 133 MHz = K5 (Pentium klases) 75 MHz. Taciau yra ribinis gaminamu CP darbiniu dažniu diapazonas, pvz., 486 klases darbinis diapazonas 33 160 MHz, Pentium - 60 233 MHz. Trys pagrindiniai CP gamintojai AMD (Advanced Microcomputer Devices), Intel ir Cyrix gamina skirtingus CP, kurie turi specifines charakteristikas bei pavadinimus, pvz., AMD - K5, Intel - Pentium, Cyrix - 6x86. Dažnai kompiuteriu specialistai nesutaria, kurio gamintojo procesoriai geriausi greicio ir suderinamumo prasme, taciau vis dažniau dabar yra vertinami seniausios ir didžiausios firmos Intel procesoriai. Procesoriu (kaip ir smegenis) reikia vesinti, todel ant jo yra dedamas vesintuvas (cooler). Intel firma pradejo leisti procesorius kartu su vesintuvais (Box), todel nereikia atskirai jo isigyti. CP su raidemis MMX turi savyje išplesta rinkini komandu, kurios pagreitina darba su grafiniais vaizdais ir garsu (multimedia). Greiciausi Pentium Pro ir Pentium II procesoriai turi dar ir vidine spartinanciaja atminti, kuri buna nurodyta šalia procesoriaus (256K arba 512K). Operatyvioji atmintis. Ši atmintis panaudojama kompiuterio veikimo metu, o išjungus kompiuteri ji išsitrina. Operatyvioji atmintis yra skirstoma pagal nuskaitymo greiti bei jungciu (''kojeliu'') skaiciu. Pagal jungciu kieki yra 30, 72 (SIMM) ir 172 jungciu (DIMM) atmintis. 30 jungciu operatyvioji atmintis yra naudojama senesnes klases kompiuteriuose (<486). 72 jungciu operatyvioji atmintis yra vyraujanti dabartiniuose kompiuteriuose. EDO raidemis pažymeta atmintis yra greitesne. Po truputeli isivyrauja DIMM atmintis, kuri Pentium ar aukštesnes klases kompiuteriuose jau turi po viena ar kelias jungtis. Vaizdo plokšte (korta). Ju ivairove yra tikrai didele. Ka svarbu žinoti renkantis vaizdo plokšte? Pirmiausia reiktu žinoti, koks bus monitorius. Svarbiausia monitoriaus ir vaizdo plokštes jungtis yra vaizdo atmintis, kuri buna nurodoma prie kortos gamintojo pavadinimo. Vaizdo atmintyje yra saugomas vaizdas, kuris patenka i monitoriu. Pvz., 1 MB vaizdo atminties gali išsaugoti 640x480 tašku vaizda su ne didesniu kaip 16 777 216 atspalviu skaiciumi, 800x600 tašku vaizda su ne didesniu kaip 65 536 atspalviu skaiciumi arba 1350x768 - su 256 atspalviais. Jei jusu monitorius turi didele skiriamaja geba (pvz., 1600x1200) ir jus norite matyti daug atspalviu - aišku, kad 1 MB vaizdo atminties jums nepakaks. Taciau svarbu žinoti, kad vaizdo atmintis nepagreitina vaizdo perdavimo, o tik nusako jo kokybe. Norint dirbti su galingais grafiniais paketais, galima isigyti vaizdo plokštes su erdviniu figuru piešimo greitintuvais (3D accelerator). Plokštuminiu vaizdu greitintuvai buna sumontuoti beveik visose naujose vaizdo kortose. Greitintuvai patys nupiešia nurodoma figura, nereikalaudami CP papildomo skaiciavimo. Gaminamos vaizdo kortos ir su išejimais i TV. Korpusas. Pagrindines yra 4 korpusu klases: stalinis (plokšcia deže, dažniausiai statoma ant stalo ir dar vadinama desktopu), mažasis bokštelis (dažniausias kospusas), vidutinis bokštelis ir didysis bokštelis. Buna ivairiu dizainu korpusu, taciau visi jie turi maitinimo bloka, jungikli ir perkrovos (reset) mygtuka. Diskasukis. Sudaro galimybe informacija perduoti diskeliuose. Populiariausi šiuo metu yra 3.5'' diskasukiai. Šiuose diskasukiuose naudojamu diskeliu talpa svyruoja nuo 750 kB iki 1.44MB. 5.25'' diskeliai vis mažiau vartojami del mažesnes talpos, nepatogaus dydžio ir nepatikimumo. Kietasis diskas. Šis irenginys - ilgalaike atmintis. Duomenu saugojimo principas paremtas magnetiniu irašu. Dar visai neseniai kietuju disku talpa matavome MB (1024 baitai = 1 KB; 1024 KB = 1 MB; 1024 MB = 1 GB), o dabar jau ne stebuklas ir 9 GB kietasis diskas. Idomumo delei galiu pasakyti, kad ikrauti Windows 95 OSR2 užima apie 135 MB, o 640 MB talpos CD-ROM enciklopediniame diske Encarta 96 yra 26 000 straipsniu, 9,5 valandos muzikos, 8000 paveiksliuku ir nuotrauku, 800 žemelapiu ir daugiau negu 100 ivairiu vaizdo ir animaciniu siužeteliu. Kietuju disku talpa labai greitai auga, nes dideja programiniu paketu apimtis ir pinga gamybos technologijos. Taciau, analizuojant kainorašti, galima nesunkiai nustatyti palankiausia kainu atžvilgiu disko talpa, kuri šiu metu yra 3,1 GB. Pagal prijungima ir duomenu perdavimo magistrale kietieji diskai gali buti skirstomi i IDE ir SCSI. Dažniausiai i PK yra dedami IDE diskai, nes jiems nereikia papildomo kontrolerio ir duomenu perdavimo greitis gali buti iki 33 MB/s. SCSI diskams yra reikalingas specialus kontroleris, jie yra 5 ar daugiau kartu brangesni už IDE, taciau duomenu nuskaitymo greitis išauga iki 40 MB/s. Kompiuterio veikimo greitis labai priklauso nuo disfaktoriaus, nes duomenu nuskaitymo greitis yra vienas pagrindiniu PK greiti ribojanciu veiksniu. Lietuvoje labiausiai paplite 2 firmu kietieji diskai - Western Digital (WDAC) ir Seagate. Klaviatura. Gerai žinomas PK valdymo ir duomenu ivedimo irenginys. Manau, kad klaviaturos pasirinkimas - vartotojo skonio ir patogumo reikalas. Standartines yra 101/102 klavišu klaviaturos, sudarytos iš pagrindines ir papildomos klaviaturos. Pagrindineje klaviaturoje yra abeceles, valdantieji (kursoriaus), specialieji (ENTER, Esc ir kt.) ir funkciniai klavišai (F1, F2 ir t.t.). Pagalbineje klaviaturoje yra dubliuojami skaitmeniniai ir kai kurie specialieji klavišai patogesniam vartotojo darbui. Išleidus Windows 95 operacine sistema, klaviatura buvo papildyta dar keliais pagalbiniais klavišais, skirtais Start meniu bei pagalbinio meniu atidarymui. Monitorius. Kaip ir televizoriu, monitoriu apibudina istrižaine. Placiausios paklausos monitoriai yra 14'' ir 15'' istrižaines, o apskritai istrižaine vyrauja nuo 9'' iki 29''. Buna spalvoti ir nespalvoti monitoriai, taciau nespalvotu monitoriu pasirinkimas kur kas mažesnis. Monitoriaus veikimo principas yra toks pat, kaip ir televizoriaus. Monitoriuje kadru atsinaujinimo greitis yra priklausomas nuo vertikaliosios ir horizontaliosios skleistines. Maksimaliosios skleistines yra nurodomos monitoriaus dokumentacijoje. Dažniausiai prie monitoriaus yra nurodoma didžiausia horizontalioji skleistine, pvz., 70 kHz. Kuo didesne skleistine, tuo mažesnis mirgejimas. Vaizdo ryškuma veikia ir vadinamasis taško dydis. Tai mažiausias vienspalvis elementas. Taško dydis nurodomas milimetrais ir buna iki 0,25 mm. Kuo mažesnis taškas, tuo geresnis ryškumas. Monitorius yra ir pats kenksmingiausias PK elementas. Siekdama apriboti magnetiniu lauku emisija, Švedijos nacionaline matavimu ir bandymu komisija (SWEDAC) Švedijoje pardavinejamiems monitoriams ivede elektromagnetinio spinduliavimo nekenksmingumo standartus, vadinamus MPR II. Monitoriai, turintys ši sertifikata, paprastai ir pažymimi tomis raidemis Gerokai patikimesni yra TCO'92 ir TCO'95 sertifikatai. TCO'92 sertifikatas apima elektromagnetines emisijos, energijos suvartojimo bei saugumo normas. TCO'95 sertifikatas daugiau yra skirtas viso kompiuterio standartams kontroliuoti. Taciau juo žymimi ir monitoriai. TCO'95 reglamentuoja ne tik visas minetas TCO'92 charakteristikas, bet ir ekologiškos gamybos, sunkiuju metalu kiekio irenginyje bei atgyvenusio irenginio nekenksmingumo laikymo salygas. Saugumo standartu sertifikatu yra tikrai nemažai (Energy Star, ISO 9421 ir kt.). Didžiausius reikalavimus kelia TCO'95 sertifikatas. Raides LR (Low Radiaton) reiškia sumažinta radiacijos emisija ir buna ant daugelio nauju monitoriu. Pele. Pagal klavišu skaiciu yra 2 arba 3 klavišu peles. Treciasis (vidurinis) klavišas yra gana retai naudojamas. Peles klavišu funkcijos yra ivairios, jos priklauso nuo naudojamos programines irangos. Pagal prijungimo prie kompiuterio buda yra nuosekliojo jungimo (serial) ir PS/2 jungimo peles. Nuosekliojo jungimo peles jungiamos prie nuosekliojo perdavimo jungties (COM porto) ir naudoja vienos jungties išteklius. PS/2 prijungimo peles jungiamos tiesiai i pagrindine plokšte ir nenaudoja nuosekliosios perdavimo jungties ištekliu. Pele - greiciausiai susidevintis PK komponentas, todel norint pailginti peles veikimo laika, patartina isigyti peles padekla (mousepad) bei periodiškai pele valyti. PK visuomet yra numatytos vidines konfiguracijos pakeitimo galimybes - papildomo standartines jungtys (slots) RAM praplesti, ilgalaikes atminties irenginiams prijungti (C-ROM, kietajam diskui, diskasukiui), ivairioms papildomoms kortoms istatyti (tinklo kortoms, garso kortoms, skaneriams, modemams ir kt.). Bendravimui su išoriniais irenginiais yra nuosekliojo ir lygiagreciojo informacijos perdavimo jungtys. Vartotojas, isigijes bazini modeli, gali pritaikyti ji savo konkretiems uždaviniams spresti. Taip PK tampa universaliu irenginiu - ji galima placiai pritaikyti ivariausiose gyvenimo srityse. PC centrinis blokas.Centrinis blokas valdo visus PK cirkuliuojančios informacijos srautus. Jį sudaro pagrindinis procesorius, pastovioji atmintis (ROM), operatyvioji atmintis (RAM), spartinančioji atmintis (Cache), ryšio tarp sisteminės magistralės ir atskirų bloko dalių bei išorinių įrenginių interfeisai, taip pat disketinių, diskinių kaupiklių bei displėjaus valdikliai. PP yra PK “smegenys”. Jis, kaip ir ESM pagrindinis procesorius, atlieka aritmetines ir logines operacijas, valdo PK. Nuo PP priklauso ESM galimybės. MP apibudinamas “žodžio” ilgiu, matuojamu bitais, ir darbo dažniu, išreiškiamu megahercais. Pastovioje atmintyje (ROM) yra gamintojo įrašyta PK valdymo programa BIOS, taip pat gali būti ir kitos operatoriaus darbą palengvinančios priemonės, pavyzdžiui, grafinis vartotojo interfeisas ir labiausiai paplitę programiniai paketai. Į operatyviają atmintį (RAM) įrašomos darbo metu vartotojo naudojamos programos, PK cirkuliuojanti informacija ir darbo rezultatai. Spartinančioji atmintis (Cache) naudojama pagreitinti informacijos cirkuliacijai tarp PP ir RAM, taip pat tarp diskinio kaupiklio ir RAM. Informacija tarp atskirų PK dalių yra perduodama per sisteminę magistralę. Ja cirkuliuoja trijų rūšių informacija: duomenys; adresai; PK valdantys signalai. PK dalys su magistale sujungiamos interfeisais, turinčiais prievadus (Ports) - kanalus informacijai priimti ir perduoti. Kiekvienas prievadas turi savo adresą, kuriuo į jį kreipiamasi. Per interfeisus PK palaiko ryšį su išoriniais įrenginiais, pvz., spausdintuvu, modemu, tinklu. IBM tipo PK naudojami lygiagretusis “Centronics” ir nuoseklieji interfeisai RS232 bei RS422. Nuo 1997 m.pradėtas naudoti ypač greitas nuoseklusis interfeisas IEEE 1394 ir universalusis nuoseklusis interfeisas USB (Universal Serial Bus), prie kurio galima prijungti net 127 išorinius įrenginius. Valdikliai valdo jiems priklausnčias PK dalis.Su išore PK bendrauja per imformacijos įvedimo ir išvedimo įrenginius. Operatorius informaciją į kompiuterį įveda klaviatūra, iš disketės, disko,CD-ROM arba skeneriu skaitydamas dokumentus. PK operatorius valdo klaviatūra, sensoriniu ekranu, pelyte arba valdymo rutuliu. PK informacija operatoriui išveda į ekraną arba atspausdina popieriuje. PK su kitais kompiuteriais bendrauja per tinklo adapterį, modamą ar faksmodemą.
Informatika  Referatai   (15,56 kB)
Dažniausiai sisteminę magistralę sudaro nuo 50 iki 100 laidininkų. Kiekvienas laidininkas atlieka skirtingą funkciją. Nepaisant to, kad yra daug magistralių tipų, kiekvienoje iš jų laidininkai gali būti grupuojami į tris funkcines laidininkų grupes: - adresų, - duomenų, - valdymo linijos. Be šių dar gali būti maitinimo linijų, reikalingų maitinti prie magistralės prijungtiems moduliams. Adresų linijomis nurodomas duomenų magistralėje esančios informacijos šaltinis ir imtuvas. Duomenų magistralės plotis lemia didžiausią galimą kompiuterio sistemos atminties talpą. Be to, adresų linijos dar naudojamos Įvesties/ išvesties prievadams adresuoti. Duomenų linijomis vyksta keitimasis duomenimis tarp kompiuterio modulių. Šių laidininkų visuma vadinama duomenų magistrale. Laidininkų skaičius nusako magistralės plotį (skiltiškumą). Kiekvienu laidininku tam tikru laiko momentu gali siunčiamas tik vienas bitas, todėl laidininkų skaičius parodo kiek duomenų galima siųsti vienu metu. Duomenų magistralės plotis yra svarbus parametras, lemiantis visos kompiuterinės sistemos pajėgumą. Valdymo magistralė kontroliuoja kreiptis į duomenų ir adresų linijas ir šių linijų naudojimą. 3. Magistralių hierarchija Jungiant į magistralę daugiau įrenginių nukenčia jos pajėgumas. Tai yra dėl dviejų priežasčių: 1. Kuo daugiau įrenginių sujungta į magistralę tuo didesnė signalų delsa. Delsą lemia laikas per kurį tam tikras įrenginys koordinuoja naudojimąsi magistrale. Kai magistralės valdymas dažnai pereina nuo vieno įrenginio kitam, ši delsa gali labai paveikti bendrą našumą. 2. Magistralė gali tapti kompiuterio silpnąja vieta, jeigu keitimosi duomenimis intensyvumas viršys magistralės galimybes. Šią problemą iš dalies galima išspręsti didinant duomenų siuntimo intensyvumą ir taikant platesnes magistrales. Tačiau keitimosi duomenimis, kuriuos generuoja į magistralę įjungti įrenginiai, tempai labai spartėja ir galiausiai nebebus užtikrinamas atitinkamas našumas. Siekiant spręsti šias problemas daugelyje sistemų naudojamos kelios magistralės. Yra tam tikra jų hierarchija. Dauguma kompiuterizuotų sistemų naudoja keliais magistrales. 2.1 pav. Yra keturios magistralės – lokalioji magistralė, PCI, AGP ir ISA. 3.1 pav. Magistralių hierarchijos pavyzdys 4. AGP magistralės veikimo principai AGP magistralė buvo sukurta kaip aukšto našumo grafinė jungtis. Ši jungtis išvengia PCI magistralės silpnųjų vietų, ir turi tiesioginį ryšį su pagrindine atmintimi. Naujoji AGP 3.0 specifikacija papildyta 8x rūšimi, kuri leidžia padvigubinti maksimalų siunčiamų duomenų persiuntimą palyginus su ankstesniu 4x, per vieną magistralės ciklą persiunčiamas dvigubai didesnis duomenų kiekis. 4.1 pav. matome grafinių jungčių pralaidumų didėjimą nuo PCI jungties iki AGP 8x. Čia AGP 1x, AGP 2x, AGP 4x ir AGP 8x pristato duomenų persiuntimo greičius. 4.1 pav.: Skirtingų jungčių duomenų pralaidumo būdai 4.1 AGP 3.0 jungties savybės • Naujas 8x duomenų persiuntimo būdas, padvigubinantis pralaidumą iki 2.1GB/s. • Nauja signalų siuntimo schema su keliais invertuotais signalais ir mažu įtampos svyravimu. • Naudojamas šoninis adresavimas, siekiant geresnio duomenų magistralės išnaudojimo. • Įjungiama kalibravimo schema, gerinanti signalo kokybę. • Dinaminė magistralės inversija, triukšmų mažinimui. • Asinchroninis veikimo būdas įgalinantis nenutrūkstamą duomenų siuntimą tinkamą video srautams. 4.2 Suderinamumas su AGP 4x • AGP 8x yra suderinama su AGP 4x jungtimi. • Tinka tie patys AGP 4x laidininkai, tik pridėta keletas signalinių jungčių AGP 8x palaikymui. • Naudojama ta pati jungtis kaip ir AGP 4x. • Suderinama su AGP 4x ir AGP Pro maitinimo schema. • motinines plokštės gali palaikyti abudu AGP 4x ir AGP 8x tipus. 4.3 Pagrindinės plokštės su AGP 8x architektūra 4.2 pav. matome subalansuotos pagrindinės plokštės architektūros pavyzdį. Aštuntos generacijos AMD Athlon™ procesorius su pagrindine plokšte sujungtas per AMD-8151™ HyperTransport AGP 3.0 grafinį tunelį. 6.4GB/s pilnas pralaidumas iš CPĮ į HyperTransport modulį įgalina AGP 8x ir kitus sisteminius Į/I modulius pasiekti optimalų našumą. 4.2 pav.: subalansuota pagrindinė plokštė su AGP 8x lizdu. 4.4 AK grafinės sistemos evoliucija Kad suprastume AGP grafikos privalumus ir naudą, reikia suprasti problemas kurios buvo sprendžiamos besivystant AGP technologijai. 4.3 pav. matome grafinės sistemos architektūrą sukurtą PCI magistralės pagrindu. Čia grafinė sistema patalpinta PCI magistralėje. Atkreipkite dėmesį kad PCI grafinis adapteris turi savyje integruotą video atmintį. Nors praeityje toks techninis sprendimas pasiteisino, atsirado keletas problemų kurios paskatino AGP grafikos atsiradimą: 1. Patobulinti grafines sistemos atmintį yra brangu, nes papildomi atminties moduliai turi būti pridėti į grafinę plokštę, arba turi būti keičiama pati plokštė. 2. Kadangi grafiniai duomenys, tokie kaip tekstūros yra saugomi pagrindinėje atmintyje, tai PCI magistralėje esanti grafinė plokštė juos gali pasiekti tik per PCI magistralę. Kreiptis tų duomenų reikia dažnai, nes pati grafinė plokštė turėdavo nedaug savos atminties. Taigi grafinė plokštė turi konkuruoti su kitais PCI magistralės moduliai dėl magistralės užimtumo ir pralaidumo. 3. Ir jeigu grafikos plokštė dažnai kreipiasi į PCI magistralę tada kiti magistralės periferiniai įrenginiai ,,badauja”. 4.3 pav.: Senesnio tipo pagrindinė plokštė naudojanti PCI magistralę grafikos apdorojimui. 4.4 ir 4.5 paveikslėliuose matome kaip AGP technologija išsprendžia problemas kilusias esant PCI magistralės grafikos plokštei. Šiuo atvejų AGP magistralė priklauso jau sistemos kontroleriui. AGP plokštė naudojasi 66 MHz PCI magistralės protokolu ir dar šoninio adresavimo galimybe siųsti komandas iš grafikos plokštės į AGP loginį įrenginį esantį Šiauriniame tilte. Šiaurinis tiltas priima skaitymo/ rašymo ir kitų komandų užklausas (naudoja buferius) tam kad įgalintų apsikeitimą duomenimis ir komandomis tarp AGP įrengininio ir sistemos kontrolerio, pilnu greičiu ir dar tuo pat metu keistųsi duomenimis tarp sistemos kontrolerio ir DDR atminties modulių. 4.4pav.: AMD-762™ sisteminis kontroleris ir AGP grafinė sistema. Vaizduojamas pagrindinės atminties naudojimas grafinėms operacijoms. Sistemų pavyzdžiai parodyti 4.4 ir 4.5 paveikslėliuose duoda tokią naudą: • Vietinė AGP sistemos architektūra siūlo svarbius našumo patobulinimus palyginus su PCI magistralės pagrindu veikusią grafinę sistemą. • AGP architektūra leidžia AGP grafinei sistemai matyti ir naudoti pagrindinę atmintį taip tarsi tai būtų jos pačios integruota atmintis – tai reiškia kad AGP plokštė dalinasi sistemine atmintimi. AGP grafinė plokštė nejaučia skirtumo tarp jos pačios ir pagrindinės atminties, visa atmintis atrodo kaip jos, vietinė. Galinis vartotojas gali didinti grafinės sistemos našumą įdėdamas papildomą pagrindinę atmintį vietoj to, kad papildytų brangią grafinę atmintį. • Grafinė sistema jau nebeturi konkuruoti dėl PCI magistralės pralaidumo kad pasiektų duomenis iš pagrindinės atminties. Tai leidžia grafiniai sistemai dirbti pilnu greičiu, beveik neturint pertraukčių iš kitų sistemos komponentų. Tai padidina visos sistemos konkurencingumą – reiškia kad procesorius, AGP grafinė sistemą, PCI magistralės įrenginiai gali veikti nepriklausomai vienas nuo kito ir konkurencingiau, taip didindami bendrą sistemos našumą. • PCI magistralės įrenginiai gali laisvai naudotis PCI magistrale, jiems nereikia ,,rungtis” su grafiniu adaptoriumi dėl magistralės. Taip PCI magistralė atsilaisvino nuo grafinės sistemos, padidėjo jos pasiekiamumas. 4.5 pav.: Aukšto lygio AGP prievado diagrama. Matome magistralės architektūrą ir Šiaurinio tilto komponentus. Bėgant laikui grafinė sistema buvo tobulinama, pervedama vis į didesnio našumo lygius. Kaip matome lentelėje yra eilė AGP tipų (duomenų siuntimo greičių) kurie atsirado laikui bėgant. Tai panašu į pavarų dėžę sportiniame automobilyje, pirma pavara atitiktų pirmąjį AGP 1x tipą, siūlantį duomenų persiuntimo greitį iki 264 MB/s. Antra pavara būtų AGP 2x, kuri padvigubino duomenų persiuntimą iki 528 MB/s. Trečia yra AGP 4x, siūlanti greitį iki 1 GB/s. Ir galiausiai ketvirtoji – paskutinė atitiktų AGP 8x, ir turėtų aukščiausią duomenų persiuntimo greitį – iki 2,1 GB/s. (Kaip pastebėjote žymėjimas 2x, 4x, ir 8x yra susijęs su pradiniu AGP 1x). 4.1 lentelė: AGP tipai ir atitinkami duomenų pralaidumai. AGP magistralės tipas Duomenų pralaidumas AGP 1x Iki 264 MB/s AGP 2x Iki 528 MB/s AGP 4x Iki 1 GB/s AGP 8x Iki 2,1 GB/s 4.5 vRAM tipai Grafinėse plokštėse atmintis susideda iš 2 dalių: kadro atminties ir papildomos atminties. Pigiose grafinėse plokštėse vRAM yra sudaryta iš SDRAM tipo atminčių, o greitose iš DDR-SDRAM. Yra specializuotos atmintys: VRAM-video atmintis, EDO VRAM , WRAM, SGRAM. Sparčiausios ir brangiausios yra VRAM ir WRAM. Grafinėse plokštėse informacija perduodama 64,128 ir net 265 bitų magistralėmis. Atminties kiekis būna : 34 DDR,64 MB DDR, 128 MB DDR, 512 MB DDR ir t.t. 4.6 Grafinis procesorius Jie yra visose grafinėse plokštėse, tai specializuota mikroschema. Grafinį procesorių valdo pagrindinis procesorius, o GP paskirtis yra grafinių objektų vaizdavimas ekrane. Yra 2D-dvimačių vaizdų, 3D- trimačių ir 2D/3D universalūs grafiniai procesoriai. Naujos plokštės turi 3D grafinį procesorių. Grafinių plokščių lyderis (buitinė, o ne profesionali) yra “nVidia GeForce X” šeimos vaizdo procesoriai. Juos gamina kompanija “nVidia”. Juose yra naudojama tik DDR atmintis. Juose naudojama sparti 166 MHz DDR SDRAM atmintis. 2002 vasaros pradžioje pristatytas 3D, trimačių vaizdų “nVidia GeForce4 Ti 4600” procesorius . Teigiama, kad “GeForce4” yra naujos kartos “nVidia” vaizdo procesoriai. Jie skirti 3D vaizdų kūrėjams ir žaidėjams, norintiems turėti itin gerus vaizdus. Atminties laidumas 2,7GB/s , 6,4 GB/s , 8,8 GB/s. 4.6 pav. AGP plokščių jungčių pagrindiniai išmatavimai 4.7 Apibendrinimas AGP magistralės tipas AGP 8x yra sekantis žingsnelis pirmyn didelio našumo grafinių jungčių evoliucijoje. Jis iš tikrųjų beveik dvigubai padidino AGP 4x grafikos galią. Ši sistema pasistūmėjo priekin tiekiant galiniam vartotojui vis geresnį ir tikroviškesnį vaizdą. Tačiau tai yra pats paskutinis AGP grafinių plokščių tobulinimo žingsnis, ateityje jau seks PCI Express grafikos apdorojimo plokštės. 5. Nuo PCI iki PCI Express – magistralių vystymasis 5.1 PCI Magistralė Nuo pradėjimo naudoti 1992 metais, PCI magistralė tapo stuburu Į/I įrenginiams visose kompiuterinėse sistemose. Pati pradinė 33 MHz ir 32 bitų pločio magistralė parodė teorinį greitį iki 133 MB/s. Laikui bėgant industrija išleido naujesnes platformų architektūras kuriose PCI magistralė buvo keičiama našesniais jos papildymais, tokiais kaip AGP ir PCI X, abidvi yra patobulinti PCI magistralės variantai. 1 lentelėje pristatomi PCI, PCI-X, ir AGP magistralių pralaidumai. 1 lentelė: PCI, PCI-X, ir AGP magistralių pralaidumai Magistralė ir jos dažnis 32 bitų pločio pralaidumai 64 bitų pločio pralaidumai 33 MHz PCI 133 MB/s 266 MB/s 66 Mhz PCI 266 MB/s 532 MB/s 100 MHz PCI X Nenaudojama 800 MB/s 133 MHz PCI X Nenaudojama 1 GB/s AGP 8x 2,1 GB/s Nenaudojama Iš arčiau tyrinėdami PCI signalų siuntimo technologiją atrandame multinumetimą magistralę (Multinumetimo [eng. multidrop] magistralė gaunama tada, kai prie jos jungiami įrenginiai, kiekvienas tais pačiais laidininkais. Kada vienas įrenginys naudoja magistralę, joks kitas negali pasiekti magistralės. Įrenginiai privalo dalintis magistrale ir laukti savo eilės, kol kiekvienas galės siųsti ar priimti duomenis), ir tai kad paraleli magistralė jau siekia savo našumo ribas. PCI magistralė negali būti paprastai patobulinta keliant taktinį dažnį, ar mažinant įtampą. Ir dar PCI magistralė neturi tokių savybių kaip galios valdymas, vietinių periferinių junginių karšto jungimo ar keitimo, (Galimybė įdėti ir išimti įrenginius iš kompiuterio jo neišjungus, ir kad operacinė sistema automatiškai atpažintų pasikeitimus), arba aptarnavimo kokybės [eng. QoS – Qualitu of service] kuri užtikrintų atitinkamą pralaidumą realių operacijų metu. Galiausiai visas įmanomas PCI magistralės pralaidumas yra tik į vieną pusę (siunčiant arba priimant) vienu laiko momentu. Daugelis ryšių tinklų palaiko dvikryptį eismą vienu laiko momentu, tai sumažina pranešimų vėlavimus. 5.2 Namų sistemos Pradinė PCI magistralė buvo kuriama kad palaikytų 2D grafiką, aukštesnio našumo diskinius kaupiklius ir vietinius tinklus. Neilgai trukus po PCI magistralės atsiradimo, išaugę 3D grafikos sistemų reikalavimai jau nebetilpo į 32 bitų, 33 MHz PCI magistralės pralaidumą. Siekdami tai pataisyti kompanija Intel ir keletas kitų grafinių gaminių gamintojų sukūrė AGP magistralės specifikaciją. Kuri buvo apibrėžta kaip aukšto našumo PCI magistralė skirta grafikai apdoroti. Taigi AGP magistralė išlaisvino PCI sisteminę magistralę nuo grafikos eismo, ir paliko ją kitiems ryšiams bei Į/I operacijoms. Prie to Intel kompanija įvedė USB 2.0 ir Nuoseklią ATA jungtis į pietinį tiltą, taip dar labiau sumažindama Į/I operacijų paklausą PCI magistralėje. 5.1 pav. matome tipiškos namų vartotojo sistemos vidinę architektūrą su Į/I ir grafinio įrenginių pralaidumais. 5.1 pav.: Tipinė namų vartotojo sistemos architektūra 5.3 Namų vartotojo sistemos silpnosios vietos Keletas namų vartotojo sistemos magistralių gali riboti sistemos našumą, dėl CPĮ, atminties ir Į/I įrenginių skirtumų: tai PCI magistralė, AGP magistralė ir ryšys tarp Šiaurinio ir pietinių tiltų. PCI magistralė. PCI magistralė suteikia iki 133 MB/s pralaidumą įjungtiems į ją įrenginiams. Keletas šių įrenginių gali išnaudoti visą pralaidumo juostą, arba naudoti didžiąją jos dalį. Kada daugiau kaip vienas šių įrenginių yra aktyvus, bendrai naudojama magistralė jau spaudžiama virš jos pralaidumo ribos. 5.2 pav. matome daugelį veiksnių taikančių į PCI magistralės silpnąją vietą. Šiame paveikslėlyje matome kokio pralaidumo reikia įvairiems ryšių, video, ir kitiems išoriniams įrenginiams kurie yra aptarnaujami PCI magistralės. Taigi matome kad multinumetama, bendrai naudojama, PCI magistralė yra spaudžiama kad palaikytų šiandienos įrenginius. Situaciją blogina tai kad kuriami įrenginiai su vis didesniais duomenų greičiais. Pavyzdžiui Gigabit Ethernet reikalauja laidumo iki 125 MB/s, tai jau beveik pilnai užpildo 133 MB/s PCI magistralę. Įrenginio IEEE 1394b magistralė yra iki 100 MB/s, tai irgi beveik užpildo standartinę PCI magistralę. AGP. Paskutinį dešimtmetį video našumo reikalavimai praktiškai dvigubėjo kas du metai. Per šį laikotarpį grafinė magistralė iš PCI tapo AGP, iš AGP – AGP 2x, AGP 4x ir galiausiai šiuo metu AGP 8x. AGP 8x dirba 2,134 GB/s greičiu. Nežiūrint šio greičio viskas žengia į priekį ir AGP magistralėms jau keliami nauji dar didesni reikalavimai. Spaudimas daromas ir pagrindinių plokščių dizainui ir jungčių kainoms. Kaip ir PCI magistralę, plėsti AGP magistralę darosi sunku ir brangu, nes didėja taktiniai dažniai. 5.2 pav.: Įrenginių aptarnaujamų PCI magistralės pralaidumo dažniai Ryšys tarp Šiaurinio ir Pirtinio tiltų. PCI magistralės perpildymas taip pat atsiliepia ir ryšiui tarp Šiaurinio ir Pietinio tiltų. Serial ATA diskai ir USB įrenginiai toliau spaudžia šį ryšį. Taigi ateityje aukštesnio pralaidumo ryšys bus reikalingas. 5.4 Serveriai Serveriuose pradinė 32 bitų, 33 MHz PCI magistralė buvo išplėsta iki 64 bitų, 66 MHz magistralės su pralaidumu iki 532 MB/s. Po to 64 bitų magistralė buvo patobulinta iki 100 ir 133 MHz, ir pavadinta PCI X. PCI X magistralė jungia serverinės sistemos (dviejų procesorių darbo stotis) mikroschemų rinkinį su išplėtimo jungtimis, Gigabit Ethernet valdikliais, ir Ultra 320 SCSI valdiklius įtaisytus pagrindinėje plokštėje. 64 bitų, 133 MHz dažniu dirbanti magistralė persiunčia iki 1 GB/s duomenų tarp Į/I įrenginio ir valdymo schemos. Tai yra tenkinantis pralaidumas daugumai serverinių sistemų Į/I įrenginių reikalavimui, tokių kaip Gigabit Ethernet, Ultra 320 SCSI, ir 2 GB/s Fibre Channel. Tačiau kaip bebūtų PCI X ,kaip ir PCI, yra bendro naudojimo magistralė ir panašu kad jai jau sekančiais metais reikės dar didesnio našumo alternatyvos. PCI Special Interest Group (PCI SIG) jau kuria PCI X 2.0 specifikaciją, kuri dirbtų 64 bitų, 266 MHz taktiniu dažniu ir padidintų duomenų perdavimo greitį dvigubai palyginus su PCI X 133 MHz. Tačiau kaip bebūtų iškyla problemos plečiant šį lygiagrečios PCI X magistralės variantą. Pačios jungtys yra didelės ir brangios, ir griežtas jų dizainas gana smarkiai kelia pagrindinių plokščių kainas keliant ir taktinį dažnį. Prie to dar reikia pridėti tai kad išvengtume papildomo elektrinio apkrovimo aukštesniuose dažniuose, PCI X 2.0 tik vienas įrenginys galės būti jungiamas prie magistralės. Ši jau nebus pritaikoma bendram naudojimui. Serverinės sistemos silpnosios vietos 5.3 pav. matome tipinės dviejų procesorių serverinės sistemos vidines jungtis. Šioje architektūroje aukšto laidumo išplėtimo magistralė padaroma atskirai sujungus Šiaurinį tiltą su su PCI X tilto mikroschema. Keletas PCI X magistralių prijungtos prie aukšto greičio išplėtimo magistralių, 10-Gigabit Ethernet, ir SAS/SATA diskų valdikliai. Ši architektūra turi ir neigiamų savybių. Atskira PCI X tilto mikroschema sujungia keletą lygiagrečių PCI X magistralių į į pagrindinės plokštės valdymo mikroschemos atskirą nuoseklią jungtį. Šis kelias yra brangus neefektyvus, ir dar atsiranda vėlavimai tarp Į/I įrenginio ir Šiaurinio tilto. Pavyzdžiui šiuo būdų prijungus 10 Gbps plokštę į 64 bitų lygiagrečią jungtį, taip išeina kad įrenginys yra tiesiogiai per PCI X tilto valdiklį į atskirą nuoseklią jungtį su Šiauriniu tiltu. 5.3 pav.: Dviprocesorinis serveris dar galima pridėti kad sekančios kartos išoriniai serveriniai Į/I įrenginiai reikalaus daug didesnio pralaidumo negu 133 MHz PCI X magistralė gali užtikrinti. Tai tokios technologijos kaip 10-Gigabit Ethernet, 10-Gbps Fibre Channel ir 4x Infiniband, prie jų taip pat priskaitomi ir labai aukšto greičio diskinių kaupiklių jungtys tokios kaip 3-Gbps SATA ir SAS. Tokiu atveju jeigu turėtumėm 10-Gbps fabric įrenginį, kiekvienas 10 Gbps lizdas į abi kryptis gali siųsti duomenų srautą iki 2 GB/s, tuo tarpu PCI X magistralė maksimaliai gali priimti tik 1 GB/s į vieną pusę vienu laiko momentu. Taigi matome, kad ši magistralė ribotų šį įrenginį iki 50 %. Nors PCI X 2.0 dirbanti 266 MHz padvigubintų tai ką gali pristatyti PCI X iki 2 GB/s tačiau tai vis tiek būtų per mažai, nes iš viso 4 GB/s reikalingi dviejų lizdų, dvipusiam 10-Gbps fabric valdikliui. Iš to matome kad reikalinga magistralė galinti pakeisti lygiagrečią PCI magistralę ir jos variantus. 5.5 PCI Express technologija PCI Express siūlo keliamą daugikliu, aukšto greičio, nuoseklią Į/I magistralę kuri turi gali yra suderinama ir su PCI įrenginiais. PCI Express sluoksniuota architektūra palaiko esančius PCI įrenginius, taip pat ir dabartinę plokščio adresavimo galimybę. PCI Express yra aprašoma kaip aukšto našumo, taškas į tašką jungiama, su daugikliais, nuoseklioji magistralė. PCI Express susideda iš dviejų vienkrypčių kanalų, kiekvienas iš jų sudarytas iš siuntimo ir priėmimo poros, kad būtų įmanomas siuntimas abiem kryptimis tuo pačiu laiko momentu. Kiekvienoje iš porų yra du žema įtampa valdomi signalai. Duomenų taktavimas integruotas į kiekvieną porą, naudoja 8b/10b kodavimo schemą, kad pasiektų tokius aukštus duomenų siuntimo kiekius. 5.4 pav. galime palyginti PCI ir PCI Express sujungimus. 5.4 pav.: PCI Prieš PCI Express PCI Express magistralės pralaidumą galime didinti įdėdami papildomas signalų poras tarp dviejų įrenginių. Ši magistralė palaiko x1, x4, x8, ir x16 linijų pločius, ir išdėlioja duomenų baitus pagal linijas. Kada du įrenginiai paruošia linijas ir darbo dažnį , duomenys yra siunčiami naudojant 8b/10b kodavimą. Pats pradinis x1 tipas gali siųsti iki 2,5 Gbps. Kadangi magistralė yra dvikryptė (duomenys abiem kryptimis siunčiami tuo pat momentu) tai efektyvusis siuntimo greitis yra 5 Gbps. 5.1 lentelėje matome susumuotus koduotus ir nekoduotus duomenų siuntimo greičius, naudojant x1, x4, x8, ir x16 modelius, kurie yra aprašyti jau pačioje pirmojoje PCI Express generacijoje. PCI Express “koduotas” ir “nekoduotas” pralaidumas Dažnai sakoma kad PCI Express pralaidumas yra koduotas. PCI Express naudoja 8b/10b kodavimą, kuris užkoduoja 8 duomenų bitus į 10 siuntimo simbolių. Tai daroma dėl to kad bitų sinchronizavimas būtų paprastesnis, paprastesnis siųstuvo ir imtuvo dizainas, padidinta galimybė surasti klaidas, ir valdymo simboliai gali būti atskirti nuo duomenų simbolių. Koduotas PCI Express x1 linijos pralaidumas yra 5 Gbps. Ko gero daug tikslesnis yra nekoduotas pralaidumas kuris būna apie 80 % nuo koduoto t.y. nuo 5 Gbps - 4 Gbps. 5.2 lentelėje matome koduotų ir nekoduotų duomenų siuntimo pralaidumus. 5.2lentelė. PCI Express pralaidumas Ateityje šios magistralės tobulinimai dar labiau pakels kanalų dažnį, pavyzdžiui antros kartos PCI Express galėtų pakelti taktavimo dažnį du kartus ir daugiau. Kadangi ši magistralė yra tiesioginė, taškas į tašką tai jos dažnis priklausys prie no jos prijungto įrenginio. Keletas PCI Express įrenginių galės veikti vienu metu netrukdydami vienas kitam. Priešingai negu PCI, PCI Express turi minimalius pašalinius signalus, be to ir taktavimo dažniai ir adresai yra sudėti į duomenų srautą. Todėl kad PCI Express yra nuosekli magistralė su keliais šalutiniais signalais, ji praleidžia labai daug duomenų per vieną jungties laidininką, daug daugiau palyginus su PCI. Tokia archtektūra leidžia turėti efektyvesnę, mažesnę ir pigesnę jungtį. 5.5 pav. bandoma palyginti duomenų kiekio pralaidumą per vieną jungties takelį PCI, PCI-X, AGP, ir PCI Express magistralėse. 5.5 pav.: Duomenų pralaidumo per vieną jungties takelį palyginimai PCI Express technologijoje didelis duomenų perdavimo patikimumas pasiekiamas naudojant žemos įtampos diferencialinius signalus. Čia signalas iš siųstuvo imtuvui siunčiamas per dvi linijas. Vienoje linijoje siunčiamas teigiamas signalas, o kitoje tas pats signalas tiktais invertuotas arba neigiamas. Linijos kuriomis siunčiami signalai daromos pagal griežtas taisykles, siekiant gauti tą savybę kad jei vieną liniją keis trukdžiai ir kita bus keičiama tų pačių trukdžių. Imtuvas priima abu signalus, neigiamą atverčia atgal į teigiamą, ir sumuoja abudu, taip efektyviai pašalinami triukšmai. Pradinė PCI Express magistralė palaiko grafines plokštes kurių vartojama galia yra iki 75 W. naujesnėje numatomos galimybės palaikyti įrenginius iki 150 W. tai turėtų tenkinti rinką nes dabartinės AGP plokštės naudoja iki 41 W, ir AGP Pro tipo iki 110 W. 5.6 Pažangiausios PCI Express savybės PCI Express turi šias savybes kurios bus pradėtos naudoti kada operacinė sistema ir įrenginiai jau palaikys jas, ir kada vartotojui jos pasidarys reikalingos. Jos yra: • Pažangus maitinimo valdymas • Duomenų kontrolės realiame laike palaikymas • Karštas jungimas • Duomenų integralumas ir klaidų aptikimas bei taisymas Pažangus maitinimo valdymas PCI Express magistralėje yra aktyvios būsenos maitinimo valdymas, kuris įgalina sumažinti galios vartojimą kada magistralė yra nenaudojama (taip nutinka tada kai nėra apsikeitimo duomenimis tarp įrenginių). Paralelių magistralių atveju magistralė būna laisva kol nėra užklausos siųsti duomenis. Priešingai didelės spartos nuosekli magistralė PCI Express reikalauja kad linija būtų bet kuriuo laiko momentu pasiruošusi, kad siųstuvas ir imtuvas būtų pasiruošę siųsti duomenis. Tai padaroma nuolat siunčiant tuščiosios eigos signalus kada nėra siunčiami duomenys. Imtuvas iškoduoja ir atmeta signalus jeigu jie yra tuščiosios eigos simboliai. Šis procesas reikalauja papildomo maitinimo, o tai įtakoja nešiojamo ar delninio kompiuterio baterijos darbo laiką. Sprendžiant šią problemą buvo pasiūlytas sprendimas naudoti dvi žemos galios būsenos jungtis ir aktyvios būsenos maitinimo valdymo protokolą. Kada magistralė pereina į tuščios eigos būseną, jungtis yra nustatoma į žemo maitinimo būseną. Ši būsena naudoja daug mažiau galios kol magistralė dirba tuščiuoju režimu. Tačiau norint grįžti į normalų darbo režimą reikalingas atstatymo laikas, kurio metu siųstuvas ir imtuvas yra iš naujo sinchronizuojami. Kuo ilgesnis atstatymo laikas tuo mažiau galios magistralė naudoja tuščios eigos metu. Dažniausiai naudojamas tas atvejis kada atkūrimo laikas yra pats trumpiausias. Duomenų kontrolės realiame laike palaikymas Ne taip kaip PCI, PCI Express magistralė palaiko nesinchroninį (priklausantį nuo laiko) duomenų siuntimą ir įvairius Aptarnavimo kokybės lygius [angl. QoS]. Ši savybė įgyvendinta virtualių kanalų pagalba, kurie garantuoja kad duomenų paketas bus pristatytas į vietą per tam tikrą laiko momentą. PCI Express palaiko didelį tokių virtualių kanalų skaičių (kiekvienas iš jų yra nepriklausomas nuo vienas kito) į vieną liniją. Dar kiekvienas kanalas gali turėti skirtingą aptarnavimo kokybės lygį. Šis sprendimas taikomas tokioms realaus laiko operacijoms kaip garso ir vaizdo medžiagos perdavimui. Karštas jungimas PCI magistralės pagrindu sukurtos sistemos nepalaiko karšto jungimo ar keitimo operacijų. Vėliau patobulintoje PCI magistralėje buvo numatyta galimybė keisti išorinius įrenginius neišjungiant sistemos. Čia yra keletas reikalavimų dėl kurių buvo kuriama tokia sistema: -Dažnai yra sunku ir kartais visai neįmanoma išjungti serverį kad pakeistume ar įdėtume periferinę plokštę. Karšto jungimo galimybė leidžia to visai nedaryti. -Nešiojamų kompiuterių savininkai, nori turėti galimybę naudoti karšto jungimo nešiojamus diskų ar ryšių įrenginius. PCI Express magistralė pilnai palaiko karšto jungimo ar keitimo galimybę. Nereikia jokių papildomų linijų, ir vienoda programinė įranga gali būti naudojama visiems PCI Express tipams. Duomenų integralumas ir klaidų aptikimas bei taisymas PCI Express palaiko visų siuntimo tipų duomenų integralumą, ir duomenų grandininius paketus. Tai labai tinkama naudoti serverinėse sistemose kur yra labai didelis tam tikrų duomenų poreikis. PCI Express taip pat palaiko klaidų tvarkykles kurios praneša apie klaidas, ir padeda duomenų atstatymo atveju. 5.7 Apibendrinimas Taigi PCI Express magistralė yra susijusi ir su PCI magistrale, tačiau turi ir keletą pagrindinių skirtumų kurie leidžia išvystyti didelį apsikeitimo duomenimis greitį. Vienas iš jų yra didelio greičio nuosekli jungtis. Ši magistralė bus taikoma visose kompiuterių sistemose – ir nešiojamuose, ir namų vartotojų ir serveriuose, ir tarnybinėse stotyse. Mūsų rinkoje šios magistralės jau pasirodė šiais metais, tačiau kaip ir tikėtasi aukštomis kainomis.
Informatika  Referatai   (405,33 kB)
Aukštos įtampos tinkluose energija paskirsto skirstomosios pastotės, kurių pagrindinė dalis – skirstomieji įrenginiai. Juos sudaro jungiamieji aparatai, apsaugos ir matavimo prietaisai. Transformatorių pastotės transformuoja energiją, t. y. vienos įtampos kintamosios srovės energiją keičia į kitos įtampos energiją. Daugelis pastočių atlieka abu šiuos uždavinius: transformuoja ir paskirsto energiją. Tai transformatorių skirstomosios pastotės, kuriuose yra transformatorius arba transformatoriai ir įvairių įtampų skirstomieji įrenginiai. Be transformatorių ir skirstomųjų įrenginių, didesnėse pastotėse yra: Dispečerinė, arba patalpos su elektros spintomis, skydais, valdymo pultu, kuriame įmontuoti matavimo, valdymo, apsaugos ir signalizacijos prietaisai; dispečerinės budintysis personalas prižiūri ir valo įrenginius; Įvairūs pagalbiniai įrenginiai, pvz., suspausto oro įrenginiai, akumuliatorių baterija, sandėlis, buitinės patalpos ir t.t. Mažos galios pastotės, maitinamos vidutiniosios įtampos oro linijomis, įrengiamos stulpuose. Transformatorius ir kiti aparatai įrengiami atramoje.
Elektronika  Diplominiai darbai   (53 psl., 445,57 kB)
Leidinyje nagrinėjama technikos objektų patikimumo sąvoka bei jo įvertinimo metodai. Objekto patikimumas įvertinamas atsižvelgiant į ypatybes. Kiekviena iš šių ypatybių – ilgaamžiškumas, negendamumas, pataisomumas, išsilaikymas – apibūdinama tam tikrais rodikliais arba charakteristikomis. Gedimo susiformavimo ir jo pašalinimo laikas yra atsitiktiniai dydžiai, todėl patikimumo charakteristikos apskaičiuojamos tikimybių teorijos ir matematinės statistikos metodais.
Mechanika  Referatai   (19 psl., 105,19 kB)
Šaltojo vandentiekio sistemų klasifikavimas, pagrindiniai elementai ir jų paskirtis. Šaltojo vandentiekio schemos. Vandens skaitiklių parinkimas, vandens apskaitos mazgai: sudėtis, tipai, įrengimo taisyklės. Uždaromosios, reguliuojamosios, apsauginės, imamosios ir pripildomosios vandentiekio armatūros tipai (čiaupai). Slėgio didinimo ir išlyginimo įrenginiai. Pastatų gaisrinio vandentiekio sistemos. Vandentiekio vamzdžiai, jungliai. Šaltojo vandentiekio skaičiavimas: debitų nustatymas. Karšto vandentiekio sistemų klasifikacija, bendra schema ir pagrindiniai elementai. Centralizuotas karštas vandentiekis. Tūriniai ir sroviniai vandens šildytuvai. Karštojo vandentiekio sistemų skaičiavimo vartojimo ir apytakos režimuose principai.
Kita  Paruoštukės   (5 psl., 718,98 kB)
Nuo 2004 m. sausio 1 d. Įsigaliojo Lietuvos Respublikos individualių įmonių įstatymas. Individuali įmonė įstatyme apibrėžta kaip neribotos civilinės atsakomybės privatusis juridinis asmuo. Individualios įmonės steigėju gali būti tik vienas veiksnus fizinis asmuo. Tokiais atvejais, kai individualios įmonės savininkas tampa neveiksnus ar ribotai veiksnus, teismas savo nutartimi paskiria individualios įmonės turto administratorių.
Administravimas  Referatai   (8 psl., 10,9 kB)
Plastidės
2009-09-10
Augalinės ląstelės turi tik joms būdingų dvimembranių organoidų - plastides. Plastidės kaip ir branduoliai bei mitochondrijos turi dvigubą membraną, DNR ir ribosomų. Plastidžių DNR žiedinė, ribosomos tokios pat, kaip prokariotinių ląstelių. Smulkios bespalvės ar blyškiai žalios proplastidės būdingos šaknų ir ūglių augimo kūgelių ląstelėms. Proplastidės yra nespecializuotos chloroplastų, leukoplastų, chromoplastų pirmtakės. Augimo kūgelio ląstelei augant ir diferencijuojantis, proplastidės didėja, jų vidinė membrana sudaro gilius įlinkimus, kurie atsiskiria ir sudaro vidinę membraninių pūslelių (tilakoidų) sistemą.
Biologija  Konspektai   (5 psl., 22,03 kB)
Prielaidos kompiuteriu tinklams atsirasti. Lokalių tinklų konfiguracija ir servisai. Duomenų perdavimo tinklai ir pagrindinės koncepcijos. Lokalaus tinklo tam tikrai darbuotojų grupei planavimas. Protokolai (ipx, spx,ncp, rip ir sap). Lokalių tinklų serveriai ir planavimas. Lokalių tinklų komponentai (mac, csma/cd). Ethernet. Kolizija. Fizinės topologijos (magistralė, žvaigždė ir dvitaškis jungimas). Žiedinė topologija. Duomenų perdavimo terpėse naudojamos elektromagnetinės bangos. Lan sujungimas į didesnį tinklą. Kartotuvai (hubs). Lan’u tarpusavio jungimas. Tiltai. Modemai (null modemai).
Informatika  Paruoštukės   (5 psl., 29,29 kB)
Dvejetainis programavimas. Informacija ir duomenys. Kompiuteriniai duomenys. Skaičiavimo sistema yra visuma būdų ir priemonių, leidžianti užrašyti ar kitaip pateikti skaičius. Skaitmens reikšmė priklauso nuo užimamos vietos (pozicijos) skaičiuje. Skaičiavimo sistemos pagrindu laikomas skaičius, kuris parodo kiek kartų padidėja arba sumažėja vieno ir to paties skaitmens reikšmė, kai jis perkeliamas į vieną iš šalia esančių pozicijų.
Informatika  Konspektai   (82 psl., 162,89 kB)
Nuolatinės srovės grandinės: pagrindinės sąvokos, dėsniai, elementų jungimo budai, grandinių darbo rėžimai, energetiniai grandinių rodikliai. Nuolatinės srovės grandinių skaičiavimo metodai: ekvivalentinių pakeitimų, Kirchhofo desniu. Kintamosios srovės grandinės: pagrindinės sąvokos ir žymėjimai. Aktyvioji, induktyvioji, ir talpinė apkrova kintamosios srovės grandineje. Nuoseklus R,L,C jungimas kintamosios srovės grandinėje. Lygegretus R,L,C jungimas kintamosios srovės grandinėje. Srovių rezonansas. Kintamosios srovės grandines galios.
Elektronika  Paruoštukės   (3 psl., 137,87 kB)
Elektra
2009-09-01
Pagrindinės elektros grandinės teorijos sąvokos: el.lauko stiprumas, potencialas, įtampa, srovė, galia. Superpozicijos principas ir metodas. Apgręžiamumo savybė. Nuoseklioji R, L, C grandinė. Kompleksinė varža. Omo dėsnis kompleksinėje formoje. Varžų trikampis. Sinusinės srovės grandinių galia. 2 el.grandinės, jų struktūra, šakos, mazgai, jungimo būdai, šaltiniai ir imtuvai. Aktyviojo dvipolio teorema. Galių trikampis. Įtampų rezonansas. Vektorinės ir topolografinės diagramos. Idealizuotieji ir realūs aktyvieji schemų elementai.Kontūrų srovių metodas.Varža.
Elektronika  Paruoštukės   (1 psl., 25,82 kB)
Telekomunikacijų modelis. Telekomunikacijų paslaugos. Paslaugų klasifikacija. Telekomunikacijų tinklai. Telekomunikacijų tinklų struktūros. Telekomunikacijų tinklo projektavimo planas. Telefoninio perdavimo traktas. Elektroakustinis pagrindai. Aukstoelektriniai ir elektroakustiniai keitikliai. Anglinis mikrofonas. Elektromagnetinis telefonas. Galiniai įrenginiai. Vietinis efektas. Telefono aparato tobulinimo kryptys. Elefono atsakikliai. Bevieliai telefonai. Video konferenciniai įrenginia. Faksimiliniai aparatai. Žynybinės telefonų stotys. Automatinės komutacijos principai.Komutaciniai prietaisai naudojami stotyje sujungimų sudarymui. Skaitmeninės komutacijos principai. Skaitmeninių signalų kanalų komutacija. Erdvinė skaitmeninio signalo komutacija. Laikinė skaitmeninių signalų komutacija. aldančiųjų įrenginių sudarymo principai.
Informatika  Paruoštukės   (3 psl., 568,56 kB)
Užsienio ryšių administravimo problemos verslo organizacijose ir jų sprendimo prioritetai. Virtualios organizacijos kilmė ir apibrėžimas. Personalo vadybos teorijos ir jų taikymo galimybės naujoms darbo organizavimo formoms, grindžiamoms IT panaudojimu, įgyvendinti Šiuolaikinės personalo valdymo funkcijos ir jų turinys Personalo valdymo apibrėžimas. Personalo valdymo vaidmuo, kuriant konkurencinį organizacijos pranašumąPersonalo valdymo funkcijos.
Vadyba  Konspektai   (75 psl., 939,64 kB)
Aktyvusis dvipolis
2009-07-09
Darbo turinys. Ekvivalentinio šaltinio metodo taikymas tiesinėms elektros grandinėms skaičiuoti. Naudojama aparatūra 1. Reguliuojamos nuolatinės įtampos šaltinis. 2. Penki žinomų varžų rezistoriai. 3. Du voltmetrai, ampermetras. 4. Jungiklis.
Fizika  Laboratoriniai darbai   (1,99 kB)
Radijo imtuvas
2009-07-09
Suprojektuoti rajono elektros tinklą pagal pateiktus projekto duomenis. Vartotojų pastočių 110/10kV maitinimas galimas iš 330/110/35kV pastotės arba iš artimiausios elektrinės.
Elektronika  Kursiniai darbai   (10,8 kB)
Išnagrinėtas dipolio tranzistoriaus veikimo principas, pasinaudojus paveiksle pateikta schema. Paveiksle matyti, kad tranzistorius yra du puslaidininkiai diodai, turintys vieną bendrą bazę (pagrindą). Tranzistoriu analize.
Elektronika  Referatai   (4,2 kB)
Augalų fiziologija
2009-07-09
Sėklavaisinių ir kaulavaisinių vaizmedžių, bei kai kurių sumedėjusių miško augalų sėklų nedaigumo laikotarpis yra ilgesnis nei keletas mėnesių. Šios sėklos nėra iki galo suformavusios gemalo, nesukaupusios jame pakankamai baltymų, aminorūgščių. Tokios būsenos sėklos kvėpuoja, jose pastebimas didelis fermentų aktyvumas, kinta baltymų struktūra, nukleino rūgštys panaudojamos naujų baltymų sintezei, suyra augimą stabdančios medžiagos.
Biologija  Namų darbai   (8,67 kB)
Fizika
2009-07-09
Lietuvoje standartinės linijinės įtampos: 330kV; 110kV; 35kV; 10kV; 6; 0,4kV; Perdavimo tinklai yra 330kV, gali būti ir110. Skistomieji tinklai gali būti 110; 35; 10; 6kV Jie naudojami stambioms įmonėms, galingiems varikliams, siurbliams. Sistema valdoma taip kad būtų: 1)minimalūs nuostoliai elektros tinkle 2)patikimas elektros tiekimas 3)ekonomiškas valdymas.
Fizika  Konspektai   (10,44 kB)
Laidininkų nuosekliojo ir lygiagrečiojo jungimo nagrinėjimas. Prietaisai: voltmetras, ampermetras, laidai, srovės šaltinis, rezistoriai. Sujungiame grandinę nuosekliajam rezistorių jungimui nagrinėti. Keičiame ampermetro vietą grandinėje, kad įsitikintume, kad srovės stipris nuosekliai sujungtoje grandinėje yra visur vienodas.
Fizika  Laboratoriniai darbai   (1 psl., 7,12 kB)
Darbo tikslas: susipažinti su ISDN BRA prieigos struktūra, galimais galinių įrenginių prijungimo būdais prie ISDN linijos, tinklo baigties konfigūravimu. Bazinės spartos prieiga (BRA – Basic Rate Access) naudojama, esant nedidelės informacijos perdavimo spartos poreikiui. Joje numatytas vienas signalizacijos kanalas D (16 kbit/s) ir du ryšio kanalai B (64 kbit/s). Bazinės spartos prieigai tinka įprastinė dvilaidė skaitmeninė abonentinė linija.
Elektronika  Laboratoriniai darbai   (17 psl., 439,55 kB)
Matavimas. Fazės drebėjimas. Pagrindiniai perdavimo kanalų klaidų rodikliai. Eksploatuojamų duomenų perdavimo tinklų kokybės tikrinimas. Įvykiai, apsprendžiantys klaidos parametrus. Defektai, sukeliantys SES įvykius tolimajame trakto gale. Skaitmeninio tinklo darbingumas apsprendžiamas tam tikra požymių aibe. Tai: sklidimo vėlinimas bei apdorojimo laikas (Propagation Delay and Processing Time); fazės drebėjimas ir dreifas (Jitter, Wander); okteto praslinkimas (Octet Slip); klaidos (Errors).
Elektronika  Pagalbinė medžiaga   (21 psl., 115,73 kB)